Das elektromagnetische Strahlungsspektrum

Abbildung 1 Das elektromagnetische Strahlungsspektrum

  1. Einleitung in die Thematik
    Strahlung im Alltag und Relevanz des Themas für Mensch und Erde
  2. Theoretische Grundlagen
  3. Strahlungsspektrum der Sonne
  4. Entstehung von Strahlung
  5. Forschungsprojekt
  6. Fazit
  7. Literaturverzeichnis

1. Relevanz für die Menschen und die Erde


Die Sonne ist ein essenzieller Baustein für das Leben auf der Erde. Wenn es die Sonne nicht geben würde, dann würde es auch kein Licht, keine Wärme und kein Leben auf dem Planeten Erde geben. Es wäre nicht mal klar, ob es überhaupt die Erde als Planeten geben würde. Aber wenn ja, dann würden sie keineswegs so aussehen, wie sie heute ausschaut (Hanslmeier 2016: 141). Unsere Sonn
produziert eine gewaltige Energiemenge von 1,5 x 10⁹ kWh
im Jahr. Diese Menge an Energie kann den Energiebedarf
der Erde 10.000-mal decken. Solare Energie wird in Form
von Wellen aus der Sonne abgesandt und erreicht die Erde.
Der Grund, weshalb die Strahlungsenergie die Erde erreicht
liegt am Medium Weltall. Der luftleere Weltraum ermöglicht der Strahlung sich ungehindert zu verbreiten und eine weite Entfernung problemlos zurückzulegen (Malberg 1997: 36). Trotzdem spielen weitere Faktoren, wie zum Beispiel die Tageszeit oder der Eintrittswinkel der Strahlen eine wichtige Rolle. Das hat zur Folge, dass bestimmte Bereiche unserer Erde mehr Sonnenenergie ausgesetzt sind als andere. Ein bekanntes Beispiel ist die Sahara-Wüste, die mehr als doppelt so viel Sonnenstrahlung ausgesetzt ist, als Mitteleuropa. Das macht die Sahara zu einem guten Standort für Photovoltaikanlagen, die in Europa weniger effektiv sind. Die Sonne spielt eine wichtige Rolle für unsere Strom- und Energiegewinnung sowohl in der heutigen Zeit als auch in der Zukunft. Sonnenenergie wird immer relevanter, da sie eine erneuerbare und nachhaltige Energiegewinnung ermöglicht. Vor allem zur Zeit des Klimawandels und der Energiewende spielt die Sonne eine essenzielle Rolle für die Menschen, aber auch für die Natur und die Erde an sich (Zapreva, Stadler, Hammerling 2015: 524f).

FWU – Das elektromagnetische Spektrum – Trailer https://www.youtube.com/watch?v=KrgD7FmFUnE

2. Theoretische Grundlagen

Strahlung unterscheidet sich im wesentlich in Wellenlänge und Frequenz. Radiowellen und Mikrowellen haben eine relativ große Wellenlänge, die mehrere Centimeter oder auch hundert Meter lang sein können. Diese Arten von Strahlung kann der Mensch weder spüren oder in irgendeiner Weise wahrnehmen. Die Frequenz ist einfach zu niedrig, um den menschlichen Körper beeinflussen zu können. Nur bestimmte Wellenlängen kann der menschliche Körper Wärme auf der Haut spüren, jedoch nicht mit dem Auge wahrnehmen. Die einzigen Strahlen, die Menschen mit dem Auge wahrnehmen können, befinden sich im Bereich des sichtbaren Lichts. Es ist nur ein sehr winziger Bereich im elektromagnetischen Spektrum, der zwischen einer Wellenlänge von 0,4µm und 0,76µm liegt. Alle Wellenlängen, die unter oder oberhalb dieser Grenze liegen, können mit dem menschlichen Auge nicht wahrgenommen werden. UV- Strahlung, Röntgenstrahlung und Gamma-Strahlung haben eine kleinere Wellenlänge als das sichtbare Licht und eine höhere Frequenz. Diese Arten von Strahlung nennt man auch „ionisierende Strahlung“, da sie die Fähigkeit haben Atome zu verändern. Sie haben so viel Energie, dass sie Atome und Moleküle zerlegen können und den menschlichen Körper damit stark beeinflussen. Diese Beeinflussung reicht vom leichten Sonnenbrand bis hin zu der Krankheit Krebs (Lauterbach 2020: 14f.). Doch solare Strahlung ist nicht die einzige Strahlung, die unseren Planeten beeinflusst. Neben der solaren Strahlung gibt es noch kosmische Strahlung, von der unsere Erde ebenfalls bestrahlt wird. Kosmische Strahlung besteht aus ca. 98% ionisierender Strahlung, die wiederrum zum größten Teil aus Gamma-Strahlung besteht. Die Quelle der kosmischen Strahlung ist jedoch nicht genau bekannt. Man geht davon aus, dass der größte Teil aus unserer Galaxie stammt. Es gibt aber auch extragalaktische Quellen, wie zum Beispiel andere Galaxien oder Sternenansammlungen. (Spatschek 2018: 131).

3. Strahlungsspektrum der Sonne

Abbildung 1 Das Strahlungsspektrum der Sonne (Nach Kraus 2004)

Die Energie, welche in der Sonne freigesetzt wird, sind elektromagnetische Wellen. Dabei entstehen mehrere Arten von Wellen, die von Gamma-Strahlung bis hin zu den Radiowellen reichen. Die Strahlung differenziert sich durch die Wellenlänge und die Frequenz der Wellen. Langwellige Strahlung, wie zum Beispiel die Radiowellen oder die Mikrowellen, haben eine relativ niedrige Frequenz. Kurzwellige Strahlung, wie zu Beispiel die Gamma-Strahlung oder die Röntgenstrahlung, hat jedoch eine relativ hohe Frequenz (Malberg 1997: 36). Die GammaStrahlung hat mit <10−4 µm die kleinste Wellenlänge im gesamten Strahlungsspektrum und gleichzeitig die höchste Frequenz. Die Röntgenstrahlung hat mit 10−5 µm bis 10−1 µm eine etwas längere Wellenlänge aber auch eine geringere Frequenz. Die UV-Strahlung hat eine Wellenlänge von 0,1 µm bis 0,4 µm. Gamma-Strahlung, Röntgenstrahlung und UV-Strahlung gehören zu den ionisierenden Strahlen. Durch ihre Fähigkeit, Moleküle in ihre Bestandteile zu zerlegen, sind diese Arten für den Menschen besonders gefährlich. Aber auch für andere Lebewesen ist ionisierende Strahlung gefährlich, denn durch die Strahlung können Zellen beschädigt werden. Je nach Eindringtiefe der Strahlung kann der Zellkern beschädigt werden und die Erbinformation verändert werden (Schneider, Burkart 1998: 720f.). Im Bereich von 0,4 µm bis 0,76 µm liegen die Wellen, die wir Menschen mit unseren Augen wahrnehmen können. Aus diesem Grund wird dieser Bereich sichtbares Licht genannt. Je nach Wellenlänge können wir unterschiedliche Farben wahrnehmen. So hat zum Beispiel die Farbe violett die kleinste Wellenlänge und die Farbe rot die größte Wellenlänge. Betrachtet man das komplette Strahlungsspektrum erkennt man, dass der Bereich des sichtbaren Lichts sehr schmal ist. Ab einer Wellenlänge von 0,76 µm bis 1000 µm liegt der Bereich der Infrarot-Strahlung. Liegt die Wellenlänge zwischen 1cm und 1m spricht man von Mikrowellen. Alle Wellen, die eine Wellenlänge von über 1m haben, werden Radiowellen genannt. Die Radiowellen haben die größte Wellenlänge und die niedrigsten Frequenzen im Strahlungsspektrum (Kraus 2004: 96).

4. Entstehung von Solarer Strahlung


Strahlung entsteht nicht einfach aus dem Nichts, sondern hat wie alles einen Ursprung. Die solare Strahlung hat ihren Ursprung in der Sonne. Im inneren der Sonne entsteht Strahlung durch das Kollidieren von Atomen. Diesen Prozess bezeichnet man als Kernfusion, welche die Quelle der Solaren Strahlung ist (Hanslmeier 2016: 157). Im Inneren der Sonne verschmelzen mehrere Wasserstoffatome miteinander, die jeweils aus einem Proton bestehen. Verschmelzen zwei Wasserstoffatome miteinander, nennt man es ein Deuteron. Bei der Verschmelzung von drei Wasserstoffatomen, nennt man es ein Tritium. Fusionieren jetzt das Deuteron und das Tritium, entsteht ein Helium-4 Atom und es wird Neutron freigegeben. Zudem wird Energie in Form von elektromagnetsicher Strahlung freigesetzt. Diese elektromagnetische Strahlung wird in Form von Wellen von der Sonne ausgesandt und erreicht unter anderem auch unseren Planeten. Durch den Prozess der Kernfusion wandelt die Sonne Wasserstoffatome in
Heliumatome um, und setzt dabei Energie frei. Durch das Abgeben von Neutronen und Energie verliert die Sonne an Masse, weshalb sie dauerhaft schrumpft (Lemmer B., Bahr B., Piccolo R.
2017: 179f.).

Kernfusion – Wie funktioniert die Sonne? https://www.youtube.com/watch?v=RrtmeUU_piM

 

5. Forschungsprojekt „Strahlentherapie“

Seit mehreren Jahrzehnten ist uns bewusst, dass Strahlung sehr gesundheitsgefährdend ist und Krebs verursachen kann. Paradoxerweise wird bei einer Strahlungstherapie ionisierende Strahlung verwendet, um Krebs zu bekämpfen. Die Strahlungstherapie gehört zu den wichtigsten Heilmethoden gegen Krebs. Die Strahlungstherapie begrenzt sich dabei aber auf lokalen Krebs, während die Chemotherapie systematisch im Körper vorgeht. Oft wird auch die Strahlungstherapie zusammen mit der Chemotherapie angewendet, um Krebsarten zu bekämpfen. Bei einer Strahlungstherapie werden Krebszellen mit ionisierender Strahlung bestrahlt, wobei die Erbsubstanz zerstört wird. Wenn die Erbsubstanz der Krebszellen nicht mehr vorhanden ist, kann sich der Krebs auch nicht mehr verbreiten. Der Nachteil an der Strahlungstherapie ist, dass auch gesunde Zellen von der ionisierenden Strahlung beschädigt werden können. Die gesunden Zellen können sich aber nach einer gewissen Zeit wieder regenerieren. Aus diesem Grund werden mehrere Einzelsitzungen durchgeführt und die gesamte Strahlungsdosis nicht in einer einzigen Sitzung abgegeben. Je nach Krebsart und Tumorstadium werden unterschiedliche Strahlungstherapien durchgeführt.  (Die Strahlentherapie bei Krebs | DKG (krebsgesellschaft.de)

 

 

6. Fazit

Zusammenfassend lässt sich sagen, dass die verschiedenen Arten der Strahlung viele positive und negative Aspekte für den Menschen mitbringen. Auch wenn wir den größten Teil des Strahlungsspektrum nicht wahrnehmen können, ziehen wir uns trotzdem einen Nutzen aus ihr. Die meisten elektronischen Geräte würden nie ohne Strahlung funktionieren. Der Fernseher, das Telefon, die Mikrowelle und viele weitere Sachen, die mit Strahlung funktionieren, würden ohne sie nicht möglich sein. Aber auch die Farben, die wir täglich sehen, würden wir ohne Strahlung nicht wahrnehmen können. Strahlung hat aber auch lebensgefährliche Eigenschaften, die für uns Menschen sogar tödlich sein können. Je nach Intensität der Strahlung, können unterschiedliche Krankheiten bei Menschen und anderen Lebewesen ausgelöst werden. Unsere Atmosphäre filtert glücklicherweise Strahlung, die für den Menschen gefährlich ist. Durch den technologischen Fortschritt ist es für uns Menschen möglich geworden, mehr über Strahlung herauszufinden und sie zu nutzen. Trotzdem darf die Strahlung vom Menschen nicht unterschätzt werden, da wir sie nicht vollkommen kontrollieren können. 

 

 

 

7. Literaturverzeichnis 

➢ Bundesamt für Strahlenschutz:
https://www.bfs.de/DE/themen/opt/uv/wirkung/langfristig/langfristig.html

➢ Hanslmeier, A (2016): Faszination Astronomie. Ein topaktueller Einstieg für alle
naturwissenschaftlich Interessierten, Graz, S.141

➢ Kraus, H (2004): Die Atmosphäre der Erde S.96

➢ Lauterbach, T (2020): Radioastronomie. Grundlagen, Technik und
Beobachtungsmöglichkeiten kleiner Radioteleskope, Wiesbaden, S.14f.

➢ Lemmer B., Bahr B., Piccolo R. (2017) Kernfusion. In: Quirky Quarks. Springer,
Berlin, Heidelberg.

➢ Malberg, H (1997): Meteorologie und Klimatologie, Berlin, S.36f.

➢ Schneider, G., Burkart, W. Gesundheitliche Risiken ionisierender
Strahlung. Radiologe 38, 719–725 (1998)

➢ Spatschek, K (2018): Kosmische Strahlung, Düsseldorf, S.131

➢ Zapreva, S., Stadler, J. & Hammerling, R. Mit der Kraft der Sonne. HMD 52, 524f.

➢https://www.krebsgesellschaft.de/onko-internetportal/basis-informationen-krebs/therapieformen/strahlentherapie-bei-krebs.html 

Abbildung 2:

➢https://www.elitec.at/de/info/Die +5+wichtigsten +Fakten+%C3%BCber+Infrarot- W%C3%A4rme